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Study of trajectories of jets in crossflow
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This paper studies the trajectories and near field of round jets in crossflow.
Incompressible direct numerical simulations are performed at velocity ratios of 1.5
and 5.7 and the effects of jet velocity profile and boundary layer thickness on the
jet trajectory are examined. The ‘rd ’ scaling used at present (Margason 1993) does
not contain any information on these parameters, and trajectories scaled by rd do
not collapse. The trajectory is strongly influenced by the near field which depends
on both the jet velocity profile and the crossflow boundary layer. A length scale is
proposed to describe the near field of the jet. An analytical expression is proposed for
this length scale which is a measure of the relative inertia of the jet and the crossflow.
Incorporating this length scale significantly improves the scaling of the trajectories.

1. Introduction
Jets in crossflow find practical application in many engineering problems like film

cooling in turbine blades, pollutant dispersal, fuel injection and dilution holes in
combustors. The flow field of a jet in crossflow is believed to be influenced primarily
by the effective velocity ratio

r =

{
ρju

2
j

ρcf u2
cf

}1/2

, (1.1)

which simplifies to r = uj/ucf for constant-density flows. Here, uj is the jet velocity,
ucf is the velocity of the crossflow, ρj is the density of the jet fluid and ρcf is the
crossflow fluid density.

Margason (1993) provides an extensive review of past work on jets in crossflow.
The different vortical features of this flow are described in detail by Fric & Roshko
(1994). The counter-rotating vortex pair, considered a predominant feature, has
been examined in detail by a number of researchers. Detailed measurements of
velocity and vorticity fields in the cross-section of a counter-rotating vortex pair
have been performed (Kamotani & Greber 1972; Fearn & Weston 1974) along
with measurements of velocity in the symmetry plane (Kelso, Lim & Perry 1996;
Andreopoulos & Rodi 1985). Horseshoe vortices (Krothapalli, Lourenco & Buchlin
1990; Kelso & Smits 1995) and the structure of the wake region (Fric & Roshko
1994) have also been studied. Measurements of scalar mixing in jets in crossflow have
recently been performed (Smith & Mungal 1998; Su et al. 2000; Shan & Dimotakis
2001; Hasselbrink & Mungal 2001b) and large-eddy simulations have been used to
study coherent structures (Yuan, Sheet & Ferziger 1999) and scalar mixing (Yuan &
Street 1998; Schluter & Schonfeld 2000).



82 S. Muppidi and K. Mahesh

The mean jet trajectory is of fundamental interest and has been studied by various
investigators. Analytical models to estimate the jet trajectory have been suggested
by Broadwell & Breidenthal (1984), Karagozian (1986) and Hasselbrink & Mungal
(2001a). Karagozian considers a vortex pair issuing from the jet orifice and into the
crossflow. Numerical solution of the equations governing the evolution of this vortex
pair gives the power law

y

d
= αrβ

(
x

d

)γ

(1.2)

for the trajectory, where d is the diameter of the jet orifice. The constants are α =0.527,
β = 1.178 and γ = 0.314. Broadwell & Breidenthal (1984) use a similarity theory to
treat the jet exit as a point source of momentum. They conclude that the global length
scale in the flow is rd in the region away from the jet exit. This length scale is used
to scale the trajectory as

y

rd
= A
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x
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)B

(1.3)

where A and B are constants. Pratte & Baines (1967) obtain A= 2.05 and B = 0.28
using their experimental data. Margason (1993) provides a list of experimental values
for A and B. Experimental results show 1.2 <A< 2.6 and 0.28 <B < 0.34. Keffer &
Baines (1963) find that the trajectories collapse on normalizing the axes with r2d .
However, their data pertained to a region very close to the jet exit (maximum
downstream distance of 4d). Smith & Mungal (1998) perform experiments at velocity
ratios ranging from 5 to 25 and find that the trajectories scale most satisfactorily with
rd (as compared to scaling with d or r2d). Hasselbrink & Mungal (2001a) employ
similarity analysis, similar to that of Broadwell & Breidenthal, and intermediate
asymptotics theory to arrive at scaling laws for velocity, mass flux and jet trajectory.
They scale the trajectory as
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in the near field and the far field (wake-like region) respectively. Here, cej and cew are
the entrainment coefficients in the jet region and the wake-like region respectively.

Figure 1 shows jet trajectories scaled with rd using data from different experiments.
Note that the trajectories do not collapse. Considerable difference in the scaled
trajectories is seen even for velocity ratios that are fairly close (r =5.7 and 5.81)
to each other. Note that Smith & Mungal (1998) and Su et al. (2000) define the
jet trajectory as the locus of maximum scalar concentration, while the experimental
results presented in Kamotani & Greber (1972) and Chochua et al. (2000) define jet
trajectory as the locus of maximum velocity. It has been noted (Smith & Mungal
1998) that the trajectory based on maximum local velocity penetrates 5–10% deeper
into the flow than the trajectory based on maximum scalar concentration. However,
the scatter observed in figure 1 far exceeds 5–10% suggesting that its origin is not
due to the difference in the definition of jet trajectory. The difference in trajectory
between Su et al.’s (2000, pipe flow profile jet) and Smith & Mungal’s (1998, top-hat
profile jet) experiments is reflected in the scalar decay rates (Su et al. 2000).

This paper uses direct numerical simulation (DNS) to examine possible reasons
for the lack of collapse with rd . The objective is to study the effect of the jet
velocity profile and the crossflow boundary layer thickness on the trajectory. DNS
of an incompressible round jet in crossflow at two velocity ratios of 1.52 and 5.7
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Figure 1. Jet trajectories from different experiments scaled by rd: �, r = 4.0 (Keffer & Baines
1963); �, r = 6.0 (Keffer & Baines 1963); �, r =3.9 (Kamotani & Greber 1972); �, r = 7.7
(Kamotani & Greber 1972); ——, r =10 (Smith & Mungal 1998); – – – –, r = 5 (Smith &
Mungal 1998); ········, r =5.81 (Chochua et al. 2000); —·—, r =5.7 (Su & Mungal 2000).

are performed. By varying the jet velocity profile and the crossflow boundary layer
thickness, the dependence of trajectory on these parameters is studied. This paper is
organized as follows. Section 2 discusses the problem and details of the simulations.
Qualitative flow features observed in the simulations are presented in § 3.1. Section 3.2
presents the jet trajectories and the observed dependence of trajectories on the
crossflow boundary layer thickness and the jet velocity profile. The near field of the
jet exit is examined in § 3.3. The jet trajectory depends on the near field and a new
scaling is proposed in § 4 in terms of the jet near field. The paper ends with a short
summary in § 5.

2. Simulation details
2.1. Problem statement

Figure 2 shows a schematic of the problem, where a laminar jet issues perpendicularly
from a round pipe into a laminar crossflow. The crossflow is in the x-direction and the
jet is in the y-direction. The origin is located at the centre of the jet exit as shown.
The jet velocity (uj ) is a function of the radial distance from the pipe centre and
the crossflow velocity (ucf ) varies with distance from the wall. u∞ is the crossflow
free-stream velocity. The velocity ratio is defined as r = uj/u∞, where uj is the mean
jet velocity obtained by averaging uj over the pipe cross-section.

The simulations are performed at two velocity ratios: r = 1.52 and r = 5.7, which
are representative velocity ratios observed in film cooling and in dilution holes of
gas-turbine combustors respectively. The Reynolds number of the flow based on the
bulk jet velocity and the pipe diameter is 1500 at r =1.52 and 5000 at r = 5.7. Two
different velocity profiles for the jet are considered, and are shown in figure 3(a). One
of them is parabolic and the other has a mean-turbulent profile. Note that given a long
enough pipe, it may be expected that the mean-turbulent profile changes to a laminar
profile. However, this transition is due to the viscous stresses. The Reynolds numbers
in the present simulations are high enough that the mean-turbulent profile does not
transition to the laminar profile over the length of the pipe included in the domain.
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Figure 2. Schematic of the problem.
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Figure 3. (a) Radial velocity variation of the two inflow profiles used for the jet: – – – –,
parabolic; ——, mean-turbulent profile. (b) Variation of the streamwise velocity with distance
from the wall for two boundary layer profiles used for the crossflow: ——, δ80% =1.32d; – – – –,
δ80% =0.44d .

This behaviour will be clarified in § 3.3.1 which discusses the results. At the same
velocity ratio, note that the jet with the parabolic velocity profile has a centreline
velocity greater than the centreline velocity of the jet with the mean-turbulent profile.
The difference in centreline velocities is about 0.5uj . Two different boundary layer
thicknesses are considered for the crossflow. At the location of the jet exit and in the
absence of a jet, the first crossflow has an 80% boundary layer thickness of 1.32d , and
the second has a boundary layer that is three times thinner (δ80% =0.44d). Figure 3(b)
shows the crossflow velocity variation with the distance from the wall for both the
cases.

Table 1 describes the different simulations performed. The parameters include the
velocity ratio r , jet velocity profile (either parabolic or mean-turbulent) and the
crossflow boundary layer thickness. In addition to the eight possible combinations,
a simulation at r = 5.7 using a parabolic profile and a crossflow with a very thick
boundary layer (δ80% = 6.4d in the absence of the jet) was performed.
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Velocity ratio Crossflow boundary
Case r Jet inlet profile layer δ80%

I 1.52 Parabolic 1.32d
II 1.52 Mean-turbulent 1.32d

III 1.52 Parabolic 0.44d
IV 1.52 Mean-turbulent 0.44d
V 5.7 Parabolic 1.32d

VI 5.7 Mean-turbulent 1.32d
VII 5.7 Parabolic 0.44d

VIII 5.7 Mean-turbulent 0.44d
IX 5.7 parabolic 6.4d

Table 1. Conditions for the various simulations performed.

2.2. Numerical details

The numerical scheme solves the incompressible Navier–Stokes equations

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂xjxj

,
∂ui

∂xi

= 0 (2.1)

on unstructured grids. Here ui , p and ν denote the velocities, pressure and kinematic
viscosity respectively. The density of the fluid is assumed constant and is absorbed into
the pressure. The numerical scheme has been described by Mahesh, Constantinescu &
Moin (2004) and will not be dealt with here in detail. The algorithm stores the
Cartesian velocities and the pressure at the centroids of the cells (control volumes)
and the face normal velocities are stored independently at the centroids of the faces.
The scheme is a predictor–corrector formulation which emphasizes discrete energy
conservation on unstructured grids. This property makes the algorithm robust at
high Reynolds numbers without numerical dissipation. The predicted velocities at
the control volume centroids are obtained using the viscous and the nonlinear terms
of equation (2.1) which are then used to predict the face normal velocities on the
faces. The predicted face normal velocity is projected so that continuity is discretely
satisfied. This yields a Poisson equation for pressure which is solved iteratively using
a multigrid approach. The pressure field is used to update the Cartesian control
volume velocities. Explicit time-advancing is performed using the Adams–Bashforth
scheme and implicit time-stepping is performed using a Crank–Nicholson scheme.
The algorithm has been validated for a variety of problems (see Mahesh et al. 2004)
over a range of Reynolds numbers.

For the lower velocity ratio simulations, the computational domain spans 48d in
the streamwise direction, 24d in the wall normal direction and 24d in the spanwise
direction. The jet exit is at a distance 8d from the crossflow inflow plane. For the
r = 5.7 simulations, the jet penetrates deeper, warranting a larger vertical extent.
The computational domain in this case spans 48d × 48d × 48d . The crossflow inflow
plane is located 12d upstream of the jet exit for the r =5.7 simulations. For all the
simulations, the domain includes a 10d length of pipe upstream of the jet exit. This
is to ensure that the jet develops naturally before issuing into the crossflow.

The computational mesh is unstructured and consists of hexahedral elements. The
use of an unstructured mesh allows an efficient variation of the mesh size. Fine
elements are used near the crossflow wall, pipe walls and near the jet exit. Relatively
coarse elements are used far away from the jet exit in the free stream. The mesh
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Figure 4. (a) The computational mesh on the symmetry plane for the simulations at r = 5.7.
(b) Horizontal section of the mesh close to the wall. (c) Closer view of mesh around the jet
exit. Note the unstructured elements and the rapid transition in mesh sizes. (d) Validation of
the crossflow boundary layer. The solid line is the analytical Blasius solution for laminar flow
past a flat plate; the symbols show the instantaneous velocity from the simulation.

size varies from 0.01d to 3d over the computational domain. Figure 4(a) shows a
cross-section of the mesh on the symmetry plane and figure 4(b) shows a slice of the
mesh parallel to the wall. Note the unstructured elements and the rapid variation
in mesh size. A closer view is provided in figure 4(c) which shows the fine elements
used near the jet exit. The mesh shown in these figures is the one used in the r = 5.7
simulations. The mesh is generated as follows. The mesh on the inflow plane of the
pipe (y/d = −10) is generated first. A boundary layer is used to allow the mesh size
to increase radially inward starting with 0.01d at the wall. The growth rate is 1.05.
Once the radial element length reaches 0.1d , the rest of the pipe cross-section is
meshed using unstructured quadrilaterals of approximately the same edge length. The
flat plate region (y/d =0) is then meshed. The mesh size increases gradually radially
outward from the pipe exit, starting from 0.01d at a growth rate of 1.05. This ensures
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a smooth variation in element size at the jet exit. The elements grow in this manner
to an azimuthal size of 0.1d following which the element size is fixed to 0.1d over a
region which roughly extends 12d in the span, 6d upstream and 20d downstream of
the jet exit. The rest of the flat plate region away from the jet is then meshed, using
larger quadrilateral elements as figure 4(b) shows. A volume grid is generated by
sweeping the surface mesh on the pipe entrance and flat plate region in the vertical
direction (y). The volume elements are therefore hexahedral prisms. The mesh size
(�y) at the wall is 0.01d and increases away from the wall at a growth rate of 1.05
till �y is around 0.1d after which it is kept constant. Past y = 24d (free stream), �y

grows more rapidly at a growth rate of 1.1 as observed in figure 4(a).
The boundary conditions are specified as follows. At the crossflow inflow plane,

the velocities are specified as a function of y such that the boundary layer has the
desired thickness at the location of the jet exit in the absence of the jet. The velocity
field is specified according to the similarity solution for laminar flow past a flat
plate (Schlichting 1968). The boundary layer is validated by performing a simulation
with no jet and the solution is compared to the analytical Blasius boundary layer
profile. Figure 4(d) shows this comparison. Instantaneous velocities (u) at all the
elements in the computational domain are plotted against the similarity variable
η = y

√
u∞/νx. Note the good agreement with the analytical solution. The mesh used

for this comparison contained about a tenth of the elements used for the computations
of a jet in crossflow. The other boundary conditions are as follows. At the inflow for
the pipe, the velocity field is specified, based on r and the jet velocity profile, as a
function of the radial distance. At the spanwise boundaries, the velocities are specified
as for the crossflow inflow plane (as a function of x and y). At the top boundary,
streamwise velocity of u∞ is prescribed. A zero-gradient boundary condition is used
at the outflow. Here and in the rest of the paper, the terminology used for velocities
is u, v and w for velocities in the x-, y- and z-directions respectively.

The computations are initialized with just the crossflow. For the the r =1.52
simulations, time advancement was explicit, while for the r = 5.7 simulations, time
advancement was implicit. The computational time step is of the order of 0.001d/u∞.
The solution is advanced to about 60d/u∞ to allow the initial transients to exit the
domain before computing time-averaged statistics. Although the inflow is laminar,
the solution is three-dimensional and unsteady. The unsteadiness is more pronounced
at the higher velocity ratio. The time-averaged quantities presented in this paper are
computed after the transients exit the domain.

3. Results
3.1. Flow features

This section presents some of the features observed in the results from the present
simulations. Figure 5(a) shows instantaneous contours of the in-plane velocity
(
√

u2 + v2) on the symmetry plane from results of simulation V where r = 5.7, the jet
has a parabolic velocity profile at the inlet and δ80% = 1.32d for the crossflow. The
unsteadiness of the flow is apparent, as are the small-scale features close to the jet exit.
Figure 5(b) shows the contours of the time-averaged in-plane velocity (

√
u2 + v2) on

the symmetry plane for an r =1.52 jet in crossflow (simulation I: parabolic velocity
profile for the jet; δ80% = 1.32d). Note the low-velocity region just upstream of the jet
exit. Also shown are a few characteristic streamlines on the symmetry plane. Note
that upstream of the jet exit, crossflow fluid close to the wall appears to stagnate
on encountering the jet. Streamlines downstream of the jet exit show entrainment of
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Figure 5. Contours of velocity on the symmetry plane. (a) Instantaneous contours of
√

u2 + v2

(r =5.7; simulation V). (b) Time-averaged contours of
√

u2 + v2 and some characteristic
streamlines (r = 1.52; simulation I). (c) Closer view of region near the jet exit. Note the
horseshoe vortex upstream of the jet (x/d = −1.4) and the hovering vortex just above the jet
exit. Parts (b) and (c) have the same colour scale.

the crossflow fluid. The existence of a node (x/d ∼ 1.05; y/d ∼ 0.3) with a positive
divergence is seen. The presence of such a node above the wall and downstream of
the jet exit has been noted by Kelso et al. (1996), Hasselbrink & Mungal (2001b)
and others. A closer view of the region near the jet exit is presented in figure 5(c).
The streamlines show the presence of a horseshoe vortex upstream of the jet exit
(x/d = −1.4) and close to the wall. Just above the jet exit, near the leading edge,
the streamline pattern shows another vortex. Kelso et al. (1996) term this a hovering
vortex and their experiments showed it at r = 2.3. The hovering vortex was observed
in all the four simulations at the lower velocity ratio; it was not seen in any of the
higher velocity ratio simulations.

3.2. Jet trajectory

Previous experimental studies have defined the jet trajectory using the local velocity
maxima (Kamotani & Greber 1972) or the local scalar concentration maxima
(Smith & Mungal 1998). This paper defines the trajectory as the streamline originating
from the centre of the jet exit on the symmetry plane. Close to the jet exit, both
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Figure 6. Comparison of jet trajectory to experiment: ——, simulation VI;
�, Su & Mungal (2000).
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Figure 7. Comparison of the time-averaged jet trajectories. (a) r = 1.52: ——, I; – – – –, II;
—·—, III; ········, IV. (b) r = 5.7: ——, V; – – – –, VI; —·—, VII; ········, VIII; —··—, IX. Note
the significant difference in trajectories even between jets of the same r .

concentration and velocity have multiple maxima (Kamotani & Greber 1972; Yuan &
Street 1998). This makes the definition of the trajectory using either of these techniques
difficult. This issue is overcome defining the trajectory based on the streamline.
Defining the trajectory based on the mean streamline also describes the path taken by
the jet fluid more accurately. The trajectories presented in this section are computed
using the time-averaged velocity field on the symmetry plane.

Figure 6 compares the jet trajectory extracted from simulation VI to that from the
experiment of Su et al. (2000). Note that the trajectories show reasonable agreement.
Both the simulation and the experiment have the same velocity ratio (r = 5.7) and the
same crossflow boundary layer thickness (δ80% = 1.32d). The jet in the simulation has
a mean-turbulent velocity profile while the jet in the experiment is fully turbulent. We
do not suggest that the interaction of a laminar jet with the crossflow is the same as
that of a turbulent jet. However, it appears, at least for this case, that the trajectories
are reasonably close. Figure 7 compares the jet trajectories obtained from the different
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Figure 8. Comparison of the time-averaged jet trajectories – axes scaled by (a) rd and
(b) r2d: ——, I; – – – –, II; —·—, III; ········, IV; �, V; �, VI; +, VII; �, VIII; �, IX. Note the
lack of collapse.

simulations. Trajectories from r =1.52 simulations are presented in figure 7(a)
and those from r = 5.7 simulations are presented in figure 7(b). The axes are non-
dimensionalized by d . The trajectories show that the fluid in the pipe exits the jet,
interacts with the crossflow fluid as it moves away from the jet exit and begins to
bend in the direction of the crossflow. Close to the jet exit the trajectories are almost
vertical. The jet with r = 5.7 penetrates deeper than the jet with r = 1.52 as expected.
Significantly, trajectories of jets at the same r differ noticeably. This difference is
attributable to variation of either the jet velocity profile or the crossflow boundary
layer thickness.

Figure 8(a) evaluates the rd scaling using the trajectories from all the simulations.
Figure 8(b) shows a similar comparison to evaluate the r2d scaling. The absence of
any kind of scaling collapse is apparent, though the rd scaling appears better than
the r2d scaling. The scatter seen in figure 8(a) shows that rd is not sufficient to
scale trajectories, and that the jet velocity profile and the crossflow boundary layer
thickness have to be taken into account to estimate the trajectory.

One possible approach to scale the trajectories is to compute the velocity ratio
(rmod) based on the integrated momentum flux of the jet and of the crossflow fluid, i.e.

rmod =




1

A

∫
A

ρju
2
j dA

1

δ

∫ δ

0

ρcf u2
cf dy




1/2

, (3.1)

where A is the cross-section area of the jet. Here, r2
mod denotes the ratio of the

momentum of the jet fluid to that of the crossflow fluid. Note that rmod is sensitive to
both the jet velocity profile and the crossflow velocity profile. Figure 9(a) shows the
trajectories from all the simulations scaled with rmodd . Hasselbrink & Mungal (2001a)
suggest that expressing the numerator in equation (1.1) in terms of the averaged
momentum flux per unit area of the jet might help scale the trajectories. Such a
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Figure 9. Comparison of the time-averaged jet trajectories – axes scaled by rmod and rmod2
which are defined in equations (3.1) and (3.2) respectively: ——, I; – – – –, II; —·—, III; ········,
IV; �, V; �, VI; +, VII; �, VIII; �, IX. Note the lack of collapse.

modified velocity ratio rmod2 can be expressed as

rmod2 =




1

A

∫
A

ρju
2
j dA

ρcf u2
cf




1/2

. (3.2)

This modified velocity ratio is clearly dependent on the jet velocity profile. Figure 9(b)
shows the trajectories from the simulations scaled using rmod2d . Note that the
trajectories scaled using both rmod and rmod2 show scatter comparable to that seen in
figure 8(a), indicating that such approaches are not adequate to scale the trajectories.

3.2.1. Effect of jet velocity profile

The effect of the jet velocity profile on the trajectory can be seen by comparing
trajectories of cases I and II (figure 7a). Both the jets have a velocity ratio 1.52 and
a crossflow boundary layer thickness δ80% = 1.32d . They only differ in the jet velocity
profile and hence the peak (centreline) velocity. The trajectories show that the jet with
the parabolic profile (simulation I) and a higher centreline velocity penetrates deeper
than the jet with the mean-turbulent profile (simulation II). It can be seen that close to
the jet exit both the trajectories are identical and that the mean-turbulent jet deflects
and bends into the crossflow before the parabolic jet does. Similar comparison of
trajectories from other simulations (III vs. IV, V vs. VI and VII vs. VIII) show the
same behaviour. The jet with the parabolic velocity profile penetrates deeper than the
jet with the mean-turbulent profile when r and δ80% are the same.

3.2.2. Effect of crossflow boundary layer

Comparison of trajectories from simulations I and III demonstrates the effect of
the crossflow boundary layer thickness on jet trajectory. Both the simulations are
at r =1.52 and the jet velocity profile is parabolic at the pipe inflow. They issue,
however, into crossflows with different boundary layer thickness. When the boundary
layer is thicker (I), the jet penetrates deeper into the crossflow than when the boundary
layer is thinner (III). This behaviour may be explained by the fact that the thinner
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Figure 10. Comparison of the time-averaged velocity (v) at the jet exit for r = 1.52:
(a) ——, pipe inflow; – – – –, I; —·—, III; (b) ——, pipe inflow; – – – –, II; —·—, IV.

boundary layer has more momentum close to the jet exit, as a result of which the jet
bends earlier compared to a similar jet entering a crossflow with a thicker boundary
layer. A similar trend was observed in Su & Mungal’s (2000) experiments where the
jet penetrates further into the flow when the nozzle is flush with the floor, compared
to when the nozzle protrudes into the flow. Again, comparison of trajectories from
other pairs of simulations (II vs. IV, V vs. VII and VI vs. VIII) where only the
crossflow boundary layer thickness differs shows the same trend. The jet penetrates
further when δ is larger. Note that the trajectories from simulations V and IX (r =5.7;
parabolic profile for the jet) show a larger difference since the crossflow boundary
layer thickness varies by a factor of 5.

3.3. Near field

The above effects of the jet velocity profile and crossflow boundary layer thickness
on the jet trajectory are explained below. Both parameters significantly influence the
near field of the jet exit which in turn affects the trajectory.

3.3.1. Description of the near field

The velocity profile at the jet exit is not the same as that at the inflow of the pipe.
Representative exit velocity profiles are shown in figures 10 and 11. The solid line in
these plots shows the velocity profile at the inflow of the pipe. Figure 10(a) compares
the exit profiles of simulations I and III, where r = 1.52 and the jets have a parabolic
profile at the inflow. The jet accelerates between the pipe inflow and the jet exit as can
be seen from the increase in the peak velocity. Also, the location of the peak moves
from the centreline (at the pipe inflow) to the right (at the jet exit). The crossflow in
simulation III has a lower δ than the crossflow in simulation I, and it can be seen
that the thinner crossflow boundary layer enhances the shift in the profile – both in
the the value of vmax and in the x/d location of vmax . Figure 10(b) makes a similar
comparison for jets with a mean-turbulent velocity profile (simulations II and IV;
r = 1.52). The jet in II issues into a crossflow that has a thicker boundary layer than
in IV. The increase in vmax in these cases is higher than is observed for I and III
and the rightward shift of the velocity maximum location is also more pronounced.
The thinner boundary layer again enhances the shift in the velocity profile. All the
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Figure 11. Comparison of the time-averaged velocity (v) at the jet exit for r =5.7: (a) ——,
pipe inflow; – – – –, V; —·—, VII; ········, IX; (b) ——, pipe inflow; – – – –, VI; —·—, VIII.
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Figure 12. Streamlines shown on the symmetry plane for a simulation with r = 5.7. Despite
the absence of reverse flow into the pipe, note the tendency of some crossflow fluid to move
‘towards’ the jet exit.

plots show that close to the leading edge of the jet (x/d ∼ −0.5), there is a region of
negative velocity and hence a region where the crossflow fluid enters the jet. Note that
higher reverse flow velocities are seen when the crossflow boundary layer is thinner
(simulations II and IV).

Velocity profiles at the jet exit for the r =5.7 simulations (simulations V to IX) are
presented in figure 11. Similar trends are seen – rightward shift of the profile and an
acceleration of the fluid near the trailing edge. None of the plots show a reverse flow
at the jet exit (in contrast to figures 10a and 10b). However, the streamlines show a
negative v velocity upstream of the jet exit and the crossflow fluid flowing towards
the jet exit (see figure 12). The higher momentum of the jet fluid prevents any of the
crossflow fluid entering the pipe and hence no reverse flow is seen at the jet exit.

This reverse flow is a result of a separation of the jet fluid inside the pipe and is
shown more clearly in figure 13. Shown are the streamlines on the wall of the pipe
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Figure 13. Streamlines on the pipe wall shown for simulations I, II, III and IV, (a)–(d)
respectively. θ = 0 is the leading edge of the pipe around which the crossflow fluid enters the pipe.

from simulations I, II, III and IV. The plots should be interpreted as though the
pipe was slit along its length at the trailing edge (x/d =0.5) and spread out. Such
a visualization of the surface streamline pattern in the pipe has been suggested by
Kelso et al. (1996). These streamlines are generated using the two-dimensional velocity
field in cylindrical coordinates (uθ and uy; ur = 0) on the wall of the pipe. y/d = 0 is
the jet exit, θ = 0 indicates the leading edge and θ = −π and θ = π join to form the
trailing edge of the pipe. Crossflow fluid enters the pipe at and near the leading edge
and exits the jet exit plane on the sides of the pipe (θ ∼ ±(1.25–1.5)). The streamline
pattern is symmetric about θ = 0 as is expected. This downward flow of the crossflow
fluid (opposing the ‘upward’ flow of the jet fluid) sets up a separation point which is
clearly seen from these plots. The location of this point suggests the extent to which
crossflow fluid enters the pipe. It is seen that a change in velocity profile does not
change the streamline pattern, as seen by comparing I with II, and III with IV. The
fluid has very low velocity close to the wall (irrespective of the profile) and this makes
the jet velocity profile unimportant. The reverse flow does show a dependence on the
crossflow boundary layer, which is observed by comparing I with III, and II with IV.
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Figure 14. (a) Schematic of the near field. (b) Contours of the pressure coefficient Cp from
simulation VI. Notice the high-pressure region upstream of the jet.

Greater reverse flow and a lower separation point are noticed when the boundary
layer gets thinner (simulations II and IV).

This behaviour shows the need to allow for a finite length of pipe in simulations
of jets in crossflow. A similar conclusion was reached by Yuan et al. (1999) in their
simulations at velocity ratios 2–4. Yuan et al. show that simulations without a finite
pipe length give unphysical results. This behaviour is explained by figures 10 and
11 which show that the flow at the jet exit is different from that at the pipe inflow.
Section 3.3.2 explains this trend as a result of the interaction between the crossflow
and the flow in the pipe. When the pipe is absent there is no reverse flow into the
pipe and the resulting asymmetry in the velocity profile at the jet exit. Simulating flow
inside the pipe seems increasingly important at lower velocity ratios. A conservative
estimate of the required pipe length is 1d . Note that these conclusions are drawn from
the present simulations where the pipe length was 10d . Also note that the Reynolds
numbers in the present simulations are high enough that the mean-turbulent profile
does not transition to the laminar profile over 10d length of the pipe as figures 10(b)
and 11(b) show. The observed differences between the inflow profile and the jet-exit
profile are due to the interaction of the jet with the crossflow.

3.3.2. Explaining the near field

In the absence of a crossflow, the jet behaves as a simple jet, the fluid decelerating
as it moves away from the jet exit. In the absence of a jet, the crossflow would behave
as a laminar flow over a flat plate. When both are present, the jet is seen as an
obstacle in the path of the crossflow. This is particularly true close to the wall. The
near field and the trajectory of the jet can be explained as a result of the competing
inertias of the jet and the crossflow.

Figure 14(a) is a schematic of the near field of the jet exit. The symmetry plane is
shown. The jet is represented by a jet boundary extending from the jet exit. On the
symmetry plane, the boundary can be represented by two streamlines, one beginning
at the leading edge of the jet exit and the other beginning at the trailing edge (these
streamlines and the jet boundary can be seen clearly in figure 12). Also shown is a
velocity (u) profile for the crossflow to indicate a y dependence and a velocity (v)
profile for the jet which is a function of x and z on the jet exit plane.

Close to the jet exit, the velocity and momentum of the crossflow are perpendicular
to those of the jet. The jet acts like an obstacle in the path of the crossflow fluid and
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a region of high pressure is set up upstream of the jet as shown. Sample contours
of the pressure coefficient (Cp =(p − p∞)/u2

∞) on the symmetry plane are shown in
figure 14(b), where p∞ is the free-stream pressure at the crossflow inlet. Note the high
pressure upstream of the jet beginning close to jet exit. Velocity contours in figure 5(b)
show that this region is characterized by low velocities. Streamlines on the (x, z)-
plane (parallel to the wall) close to the wall show crossflow fluid from upstream of
the jet exit going around the jet, similar to flow around obstacles. The high-pressure
region sets up an adverse pressure gradient in the vertical direction which pushes
crossflow fluid towards the jet exit as seen in the downward curvature of streamlines
upstream and close to the jet exit (figures 5b and 12). When the jet has a lower
momentum, as in the r = 1.52 case, the adverse pressure gradient succeeds in forcing
crossflow fluid into the pipe (figures 10a and 10b). To conserve mass, the jet fluid
towards the trailing edge accelerates which results in the rightward shift of velocity
profiles as observed.

When the crossflow boundary layer is thinner, the momentum of the crossflow fluid
closer to the jet exit increases. As a result, the high-pressure region moves closer to
the jet exit. This causes the velocity profile shift at the jet exit to be greater in cases
with thinner crossflow boundary layer as was observed (figures 10 and 11). A thinner
boundary layer also causes a greater adverse pressure gradient into the pipe which in
turn drives more crossflow fluid into the pipe. This behaviour is noticed as increased
negative velocities at the leading edge of the jet exit (figure 10), more reverse flow
(figure 13) and an earlier separation point in the pipe.

4. A simple scaling law for the trajectory
The deflection of the jet is a result of the inertial momentum of the crossflow

opposing and, eventually, overcoming the momentum of the jet. Close to the jet exit,
the jet has a higher overall momentum than that of the crossflow which is at a low
velocity. This causes the trajectory to be almost vertical as seen earlier. Moving away
from the jet exit, the velocity of the crossflow fluid increases (until it reaches u∞
whereafter it is constant) and velocity of jet fluid decreases. Figure 7(a) shows that
the jets with r = 1.52 undergo a rapid deflection past y/d ∼ 1.5. The jets with r = 5.7
(figure 7b) all show a similar deflection past y/d ∼ 6.

A simple model for the trajectory is proposed. The model is restricted to jets with a
circular cross-section. Note that in the near field, the jet remains vertical up to a point
beyond which it rapidly deflects into the crossflow. Let h denote the height up to
which the jet is vertical. In the near field, the jet may be approximated by a cylinder
of diameter d and a height h, which interacts with the crossflow. It is postulated that
the jet deflects due to the competing effects of the pressure gradient imposed by the
crossflow (figure 14b) and the inertia of the jet in the vertical direction. The pressure
gradient imposed by the crossflow scales with the crossflow momentum flux,

ρcf d

∫ h

0

u2
cf dy. (4.1)

Note that ucf varies with y and hence depends on the crossflow boundary layer
thickness. The vertical momentum flux of the jet is represented by

ρj

∫
A

u2
j dA. (4.2)
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Simulation r Velocity profile dj/d δ80% h/d

I 1.52 parabolic 1.15 1.32d 0.61
II 1.52 mean-turb 1.09 1.32d 0.53

III 1.52 parabolic 1.15 0.44d 0.32
IV 1.52 mean-turb 1.09 0.44d 0.26
V 5.7 parabolic 1.15 1.32d 2.57

VI 5.7 mean-turb 1.09 1.32d 2.38
VII 5.7 parabolic 1.15 0.44d 1.85

VIII 5.7 mean-turb 1.09 0.44d 1.76
IX 5.7 parabolic 1.15 6.4d 3.14

Table 2. Values of near-field scaling parameter h computed from the trajectories.

Note that uj depends on the jet velocity profile. It is assumed that the jet begins
to deflect when the cumulative effect of the pressure gradient on the jet becomes
comparable to the vertical momentum flux, i.e.

ρcf d

∫ h

0

u2
cf dy = Cmρj

∫
A

u2
j dA, (4.3)

where Cm is a proportionality constant. The velocity profile of the jet may be
parameterized in terms of an effective diameter dj which is defined such that

ρj

∫
A

u2
j dA =

πd2
j

4
ρjuj

2 (4.4)

where uj denotes the mean velocity of the jet. Note that dj equals d for a jet with
a top-hat profile. For the two jet velocity profiles considered in this paper, dj/d is
higher for the jet with a parabolic profile than for the jet with a mean-turbulent
profile (see table 2). Defining dj allows a comparison between jets of the same rd but
different velocity profiles. Equation (4.3) may be rewritten in terms of r as∫ h

0

d

{
ucf

u∞

}2

dy = Cmr2π
d2

j

4
. (4.5)

Equation (4.5) explains the behaviour seen in the simulations. When the velocity
ratio r increases, h increases to satisfy equation (4.5) and hence the jet deflects later.
Recall that at the same velocity ratio and crossflow boundary layer thickness, a jet
with parabolic velocity profile penetrates deeper into the crossflow than a jet with
mean-turbulent velocity profile. The parabolic profile jet has a higher dj/d and a
higher momentum flux (right-hand side of equation (4.5)) and hence h needs to be
higher compared to the mean-turbulent profile jet. This causes the parabolic jet to
deflect later and penetrate deeper into the crossflow. Also recall that between two jets
with the same velocity profile and velocity ratio, when the crossflow boundary layer
is thinner, the jet penetrates less. For the same jet momentum flux, h needs to be
smaller when the boundary layer is thinner (lower δ) in order to satisfy equation (4.5).
This causes the jet in a thinner crossflow to deflect earlier, penetrating less. Equa-
tion (4.5) may be written as∫ δ

0

d

{
ucf

u∞

}2

dy +

∫ h

δ

d

{
ucf

u∞

}2

dy = Cmr2π
d2

j

4
, (4.6)
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where the crossflow momentum flux term has been split into two components. The
first term is the momentum flux due to the crossflow fluid in the boundary layer
and the second term is the momentum flux due to the crossflow fluid outside the
boundary layer. Since h increases with r , the ratio of the first term to the second
term in equation (4.6) decreases with increasing r . Hence, the contribution of the first
term to the left-hand side of equation (4.5) gets smaller at higher r . This reduces the
dependence of h (and hence the jet trajectory) on δ at higher velocity ratios.

In practice, h may be extracted from a trajectory as the y-coordinate at a small
distance x downstream of the jet exit. Table 2 shows h extracted in this manner from
the different simulations. Here, h is the y-coordinate of the trajectory at x = 0.05d .
Note that the above mentioned dependence of h on the jet velocity profile and the
crossflow boundary layer thickness is observed in table 2. A similar dependence is
seen when h is defined as the y-coordinate of the trajectory at x = 0.1d . The fact that
h depends on both the jet profile and the crossflow profile suggests that h be used
to scale the trajectories. When the trajectories from the simulations are expressed in
terms of the power law fit

y

rd
= A

(
x

rd

)B

, (4.7)

the value of A ranges between 1.45 and 2.39. The value of B shows a relatively smaller
range, 0.32 < B < 0.34. A correlation of h and A shows A ∝ (h/d)0.15. Including h

into the trajectory scaling yields

y

rd
= A′

(
x

rd

)B(
h

d

)C

, (4.8)

where A′ is a constant, and C = 0.15. An analytical approach to estimate h is provided
below. The crossflow velocity ucf may be approximated as a piecewise linear function
of y as

ucf =
u∞

δ
y when y � δ, ucf = u∞ when y � δ. (4.9)

Expressing ucf in this manner, equation (4.5) may be written as

d

∫ h

0

{y

δ

}2

dy = Cmr2π
d2

j

4
, when h � δ,

d

∫ δ

0

{y

δ

}2

dy + d

∫ h

δ

dy = Cmr2π
d2

j

4
, when h � δ
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which, upon evaluating the integrals, becomes

d

δ2

h3

3
= Cmr2π

d2
j

4
, when h � δ,

d
(
h − 2

3
δ
)
= Cmr2π

d2
j

4
, when h � δ.
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Finally, h may be written as

h

d
=

{
3

4
πCmr2

δ2d2
j

d4

}1/3

, when h � δ,

h

d
=

2

3

δ

d
+

π

4
Cmr2

d2
j

d2
, when h � δ.




(4.12)
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Figure 15. Trajectories scaled using h. Thick lines show the scatter bounds using rd scaling.
h is computed using a piecewise linear function for ucf in equation (4.5). Trajectories shown
are from all the simulations: ——, I; – – – –, II; —·—, III; ········, IV; �, V; �, VI; +, VII; �,
VIII; �, IX.

The unknown in equation (4.12) is Cm. Note the form of equation (4.12). h is less than
δ only at low velocity ratios, and for most cases, h � δ applies. Equation (4.12) shows
that as r increases, h increases. At high velocity ratios, the contribution of the 2

3
δd

term to h decreases indicating that the crossflow boundary layer thickness has a weak
influence on h and the trajectory. These trends are in agreement with observed results.
Substituting the values from table 2 (where h is extracted from the trajectory) gives
Cm ∼ 0.05. The values of h computed using equation (4.12) and Cm = 0.05 are used
to scale the trajectories in figure 15. Solid thick lines are used to represent the scatter
in the rd scaling corresponding to the rd scaled trajectories of the jet that penetrates
the furthest (simulation IX) and the one that penetrates the least (simulation IV) into
the crossflow. Note the reduction in scatter. The improved scaling supports the use of
h to represent the effect of the jet velocity profile and the crossflow boundary layer
on the jet trajectory.

5. Summary
Trajectories of a jet in crossflow are at present scaled by rd . However, the scaled

trajectories from different experiments show a considerable scatter. Round jets in
crossflow are studied using direct numerical simulation on an unstructured mesh.
The simulations are performed at two velocity ratios – 1.5 and 5.7. By varying the
crossflow boundary layer thickness and the jet velocity profile, it is shown that the
trajectory depends on both these parameters. A jet with a higher centreline velocity
issuing into a crossflow with a thicker boundary layer penetrates deeper compared
to other jets at the same jet-to-crossflow velocity ratio. The jet trajectory is shown
to be determined by the near field of the jet exit. A length scale h is proposed that
parameterizes the relative inertia of the jet and the crossflow. This length scale takes
into account both the jet velocity profile and the crossflow boundary layer thickness.
An analytical expression for h is derived. Trajectories are scaled using h and the
scaled trajectories show a significantly better collapse.
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